41,899 research outputs found

    Independent Educational Evaluations as Issues of Dispute in Special Education Due Process Hearings

    Get PDF
    This study examined the pertinent details and outcomes of special education due process hearings (n = 100) that addressed independent educational evaluations as an issue of dispute in a 14-state sample. Variables related to the frequency of these cases, the characteristics of students involved, the specific types of IEEs requested, and the other related issues and outcomes were coded and analyzed. Psycho-educational evaluations were addressed in the most due process hearings, followed by speech-language evaluations, and neuro-psychological evaluations. Statistically significant associations were identified between states regarding a) the extent to which IEEs are issues of dispute in due process hearings, b) the prevailing parties in these hearings, and c) the types of legal representation used by parents. Recommendations for policy, practice, and additional research related to IEEs and special education due process hearings are discussed

    Effect of the orientational relaxation on the collective motion of patterns formed by self-propelled particles

    Full text link
    We investigate the collective behavior of self-propelled particles (SPPs) undergoing competitive processes of pattern formation and rotational relaxation of their self-propulsion velocities. In full accordance with previous work, we observe transitions between different steady states of the SPPs caused by the intricate interplay among the involved effects of pattern formation, orientational order, and coupling between the SPP density and orientation fields. Based on rigorous analytical and numerical calculations, we prove that the rate of the orientational relaxation of the SPP velocity field is the main factor determining the steady states of the SPP system. Further, we determine the boundaries between domains in the parameter plane that delineate qualitatively different resting and moving states. In addition, we analytically calculate the collective velocity v⃗\vec{v} of the SPPs and show that it perfectly agrees with our numerical results. We quantitatively demonstrate that v⃗\vec{v} does not vanish upon approaching the transition boundary between the moving pattern and homogeneous steady states.Comment: 3 Figure

    Effects of a radially varying electrical conductivity on 3D numerical dynamos

    Full text link
    The transition from liquid metal to silicate rock in the cores of the terrestrial planets is likely to be accompanied by a gradient in the composition of the outer core liquid. The electrical conductivity of a volatile enriched liquid alloy can be substantially lower than a light-element-depleted fluid found close to the inner core boundary. In this paper, we investigate the effect of radially variable electrical conductivity on planetary dynamo action using an electrical conductivity that decreases exponentially as a function of radius. We find that numerical solutions with continuous, radially outward decreasing electrical conductivity profiles result in strongly modified flow and magnetic field dynamics, compared to solutions with homogeneous electrical conductivity. The force balances at the top of the simulated fluid determine the overall character of the flow. The relationship between Coriolis and Lorentz forces near the outer boundary controls the flow and magnetic field intensity and morphology of the system. Our results imply that a low conductivity layer near the top of Mercury's liquid outer core is consistent with its weak magnetic field.Comment: 30 pages, 11 figures, 2 tables. To be published in Physics of Earth and Planetary Interiors (PEPI)

    Truncating the loop series expansion for Belief Propagation

    Full text link
    Recently, M. Chertkov and V.Y. Chernyak derived an exact expression for the partition sum (normalization constant) corresponding to a graphical model, which is an expansion around the Belief Propagation solution. By adding correction terms to the BP free energy, one for each "generalized loop" in the factor graph, the exact partition sum is obtained. However, the usually enormous number of generalized loops generally prohibits summation over all correction terms. In this article we introduce Truncated Loop Series BP (TLSBP), a particular way of truncating the loop series of M. Chertkov and V.Y. Chernyak by considering generalized loops as compositions of simple loops. We analyze the performance of TLSBP in different scenarios, including the Ising model, regular random graphs and on Promedas, a large probabilistic medical diagnostic system. We show that TLSBP often improves upon the accuracy of the BP solution, at the expense of increased computation time. We also show that the performance of TLSBP strongly depends on the degree of interaction between the variables. For weak interactions, truncating the series leads to significant improvements, whereas for strong interactions it can be ineffective, even if a high number of terms is considered.Comment: 31 pages, 12 figures, submitted to Journal of Machine Learning Researc

    Shape Memory Alloy Nanostructures With Coupled Dynamic Thermo-Mechanical Effects

    Full text link
    Employing the Ginzburg-Landau phase-field theory, a new coupled dynamic thermo-mechanical 3D model has been proposed for modeling the cubic-to-tetragonal martensitic transformations in shape memory alloy (SMA) nanostructures. The stress-induced phase transformations and thermo-mechanical behavior of nanostructured SMAs have been investigated. The mechanical and thermal hysteresis phenomena, local non-uniform phase transformations and corresponding non-uniform temperature and deformations distributions are captured successfully using the developed model. The predicted microstructure evolution qualitatively matches with the experimental observations. The developed coupled dynamic model has provided a better understanding of underlying martensitic transformation mechanisms in SMAs, as well as their effect on the thermo-mechanical behavior of nanostructures.Comment: 8 pages, 3 figure

    The Competitive Causes and Consequences of Customer Satisfaction

    Get PDF
    We conduct two studies to test three hypotheses: (1) Competition increases a firm's customer satisfaction; (2) Rivals' customer satisfaction increases a firm's customer satisfaction; (3) Rivals' customer satisfaction reduces a firm's sales. First, we use store-level customer satisfaction data from a supermarket chain. Next, we consider a range of industries, using brand-level customer satisfaction ratings from the American Customer Satisfaction Index. Results from both studies provide support for the latter two hypotheses, while we only find support for the first hypothesis in the second study.Customer Satisfaction, Food retailing, Competitive Strategy, Consumer/Household Economics,

    The First Simultaneous 3.5 and 1.3mm Polarimetric Survey of Active Galactic Nuclei in the Northern Sky

    Full text link
    Short millimeter observations of radio-loud AGN offer the opportunity to study the physics of their inner relativistic jets, from where the bulk millimeter emission is radiated. Millimeter jets are significantly less affected by Faraday rotation and depolarization than in radio. Also, the millimeter emission is dominated by the innermost jet regions, that are invisible in radio owing to synchrotron opacity. We present the first dual frequency simultaneous 86GHz and 229GHz polarimetric survey of all four Stokes parameters of a large sample of 211 radio loud active galactic nuclei, designed to be flux limited at 1Jy at 86GHz. The observations were most of them made in mid August 2010 using the XPOL polarimeter on the IRAM 30 m millimeter radio telescope. Linear polarization detections above 3 sigma median level of ~1.0% are reported for 183 sources at 86GHz, and for 23 sources at 229GHz, where the median 3 sigma level is ~6.0%. We show a clear excess of the linear polarization degree detected at 229GHz with regard to that at 86GHz by a factor of ~1.6, thus implying a progressively better ordered magnetic field for blazar jet regions located progressively upstream in the jet. We show that the linear polarization angle, both at 86 and 229GHz, and the jet structural position angle for both quasars and BL Lacs do not show a clear preference to align in either parallel or perpendicular directions. Our variability study with regard to the 86GHz data from our previous survey points out a large degree variation of total flux and linear polarization in time scales of years by median factors of ~1.5 in total flux, and ~1.7 in linear polarization degree -maximum variations by factors up to 6.3, and ~5, respectively-, with 86% of sources showing linear polarization angles evenly distributed with regard to our previous measurements.Comment: Submitted for Publication in Astronomy & Astrophysics. 14 pages (including 2 tables and 18 figures

    Radiative decays of mesons in the NJL model

    Get PDF
    We revisit the theoretical predictions for anomalous radiative decays of pseudoscalar and vector mesons. Our analysis is performed in the framework of the Nambu-Jona-Lasinio model, introducing adequate parameters to account for the breakdown of chiral symmetry. The results are comparable with those obtained in previous approaches.Comment: 19 pages incl. 4 figure
    • …
    corecore